
Practical Application of Model-based Programming and State-based
Architecture to Space Missions

Gregory A Horvath, Michel D Ingham
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

{gregory.horvath, michel.ingham}@jpl.nasa.gov

Seung Chung, Oliver Martin, Brian Williams
CSAIL

Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139

{chung, omartin, williams}@mit.edu

Abstract

Innovative systems and software engineering solutions
are required to meet the increasingly challenging demands
of deep-space robotic missions. While recent advances in
the development of an integrated systems and software en-
gineering approach have begun to address some of these is-
sues, they are still at the core highly manual and, therefore,
error-prone. This paper describes a task aimed at infus-
ing MIT’s model-based executive, Titan, into JPL’s Mission
Data System (MDS), a unified state-based architecture, sys-
tems engineering process, and supporting software frame-
work. Results of the task are presented, including a dis-
cussion of the benefits and challenges associated with inte-
grating mature model-based programming techniques and
technologies into a rigorously-defined domain specific ar-
chitecture.

1 Introduction

1.1 Motivation and Objectives

As spacecraft and their missions have become ever more
complex and ambitious, systems and software engineering
practice has been severely challenged to create and verify
space systems that assure correctness, reliability, and ro-
bustness in an efficient, cost effective manner. These chal-
lenges have motivated the development of the Mission Data
System (MDS), a unified multi-mission software architec-
ture for flight, ground, and test systems, and a novel sys-
tems engineering methodology, called State Analysis. State
Analysis produces model-based requirements on the system
and software design, which map explicitly to components in
the MDS software product line, an adaptable set of software
frameworks for developing embedded control systems. This
explicit mapping narrows the gap between systems and soft-
ware engineering, and reduces the risk of introducing er-
rors during software implementation. However, the models

and software specifications from State Analysis still require
manual translation into robust software for estimation and
control. This translation process implies that the possibility
of errors still exists.

The objective of this task is to augment State Analysis
and MDS with the benefits of Model-based Programming,
an approach to engineering software that is able to directly
reason through models of a system for the purposes of es-
timation, control, fault diagnosis, recovery, planning, and
execution. The Model-based Programming paradigm is em-
bodied in a suite of software technologies developed at MIT,
including the Titan model-based executive. In the Titan sys-
tem, models of component behavior are fed directly into a
reasoning engine in order to compute estimates of the cur-
rent system state, and deduce commands necessary to drive
the system towards a specified goal state. This paper will
describe the integration of Titan into the MDS framework
and, more generally, will address issues associated with in-
tegrating advanced Model-based Programming technology
into flight and ground software for space exploration mis-
sions.

1.2 Outline

The paper begins with a background section, briefly ex-
ploring the basics of the two fundamental technologies in-
volved in the task, the MDS architecture (including the State
Analysis process) and Model-based Programming. A de-
tailed discussion of the task follows, including a description
of the motivations for the task, the task objectives, and the
technical approach. The paper concludes with a discussion
of results and a breakdown of challenges addressed by the
task.



2 Background

2.1 MDS

MDS is a state-based, unified multi-mission architecture
for creating integrated flight, ground, and simulation sys-
tems. It is supported by the State Analysis process, a rigor-
ous systems engineering methodology. State Analysis pro-
duces a set of requirements on system and software design
based on models of the system state behavior. These model-
based requirements map directly to a software implementa-
tion thanks to frameworks in which the main elements of
State Analysis are explicitly represented as software com-
ponents. As a result, requirements are more formal than
textual ‘shall’ statements, the translation from requirements
to code is less ambiguous, and software and systems engi-
neers communicate using a common language, reducing the
chance for errors introduced by miscommunication between
the two domains.

2.1.1 State-based Control Architecture

The state-based control architecture, depicted in Figure 1,
is designed to meet the needs of control systems for com-
plex embedded applications. It is built on several overar-
ching principles which help ensure consistency throughout
the entire product lifecycle [1, 2], including the following:

• Models are central to the entire system. Models of sys-
tem behavior are documented and used to inform all
aspects of system development and design.

• Requirements developed according to the State Anal-
ysis process map directly into a software implementa-
tion. The MDS software frameworks, discussed below,
are one implementation of a component-centric state-
based framework.

• All knowledge of system state is stored in State Vari-
ables. Thus, all components that require information
about state get it from a common source, eliminating
errors which arise as a result of disparate components
using private data to reason about the state of the sys-
tem.

• Estimation and control, which are often intertwined in
traditional flight and ground software architectures, are
strictly separated. This makes the logic for each func-
tion explicit, as well as easier to review. Estimators
and controllers are also referred to as achievers, since
their role is to achieve the goals issued by the Mission
Planning and Execution software.

• Operator intent is made explicit through the use of
goals, which are constraints on the value of a given
state variable over a time interval, rather than inferred
via examination of low-level command sequences.

Figure 1. State-Based Control Architecture
[1]

2.1.2 State Analysis

State Analysis is a rigorous model-based systems engineer-
ing methodology that leverages the state-based control ar-
chitecture [1]. State Analysis aims to improve on the cur-
rent state of systems engineering practice by documenting
requirements of the target system in terms of models, not
textual ‘shall’ statements. The more formal and thorough
requirements specification helps to reduce the ambiguity in-
herent in the traditional requirements capture process, and
provide systems and software engineers with a common lan-
guage to communicate. When coupled with a state-based
software framework like MDS, the specifications produced
through State Analysis map directly to code.

Just as in the architecture, state is central to the process.
Systems engineers begin the process with a State Discov-
ery and Modeling activity, in which the key state variables,
commands and measurements for the system are identified
in an iterative fashion, and models of the behavior of these
state variables are incrementally constructed. Our model of
the system under control is composed of:

• State Effects Models describing how each state in the
system under control evolves over time and under the
influence of other states;

• Measurement Models describing how each measure-
ment is affected by various states in the system under
control; and

• Command Models describing how states are affected
by each command (possibly under the influence of
other states in the system under control).

In addition to these models, the State Discovery and
Modeling activity produces State Effects Diagrams (SEDs),
which depict state variables as ovals, measurements as
upward-facing triangles, and commands as downward-
facing triangles (see Figure 2). An arrow from one state



Figure 2. IMU Adaptation State Effects Dia-
gram

variable to another indicates a causal (physical) effect be-
tween these state variables. An arrow from a state variable
to a measurement indicates that the measurement is affected
by that state variable. An arrow from a command to a state
variable indicates that the command has an effect on that
state variable. The state effects diagrams and models are es-
sential products of the State Analysis process, and are used
to inform many tasks performed later in the process, such
as estimator and controller design, software collaboration
diagramming, and specification of goals and activity elabo-
rations.

2.1.3 MDS Frameworks

MDS also incorporates a robust set of software frameworks,
whose structure closely mirrors that of the state-based archi-
tecture. As a result, the mapping from requirements (devel-
oped through State Analysis) to software implementation is
straightforward.

The MDS software frameworks are a fully-featured set
of reusable classes that developers can use to leverage the
benefits of State Analysis and the state-based architecture.
The frameworks are structured in a layered fashion, and
provide facilities from the OS abstraction layer all the way
up through the application layer. The frameworks contain
many basic services, such as math packages, serialization
facilities, and an efficient type ID system, as well as higher-
level components that map to the state-based architecture,
such as state variables, estimators and controllers, and plan-
ning and execution functionality. The MDS software frame-
works are currently available in C++ and Java implementa-
tions. The C++ version was used in support of this task.

The software design specifications captured as part of the
State Analysis process are readily mapped to canonical pat-
terns of modular and reusable software components in the
MDS software frameworks. These software components
are then implemented as adaptations of the MDS software

framework, following a set of well-documented steps.
By encompassing all aspects of the development process,

from architecture to systems engineering to software imple-
mentation to operations, MDS provides an environment for
creating highly reliable software products throughout the
entire project lifecycle.

2.2 Model-Based Programming and the
Titan Model-Based Executive

As control programs for embedded systems become
more complex, the job of programmers becomes more com-
plex: they must reason about interactions between many
components, as well as inferring system state from an in-
complete set of sensor data. As the complexity of com-
ponents and the number of interactions between compo-
nents increase, the traditional approach to developing con-
trol software becomes unmanageable. Model-based exec-
utives address this problem by reasoning about declarative
models of the system in order to inform the processes of es-
timation, control, activity planning, and robust activity exe-
cution [3].

The benefits of the model-based programming approach
are numerous, and applicable at each stage of the develop-
ment process. In the requirements capture phase, the use
of formally specified declarative models instead of the typi-
cal shall-statements leads to more detailed, inspectable and
reviewable specifications. During the design phase, the cov-
erage of estimation and control software is broadened: by
focusing on model development and allowing the execu-
tive to manage the complex inter-component interactions,
monitoring and control functionality can be elevated to the
subsystem or system level. This allows, for example, cov-
erage of dual fault cases (which are usually too complex
for consideration in typical space missions). During imple-
mentation, the difficult and error-prone task of translating
requirements into code is eliminated, since the model is the
input to the control software. Finally, the formal behavioral
specifications can be used to perform model checking dur-
ing verification and validation (V&V).

Model-based programming is an emerging technol-
ogy that has made considerable impact. At the core,
model-based executives must solve an instance of the
classic AI planning problem. Combined with the
memory and processing constraints presented by highly
resource-constrained embedded platforms, performance is
a paramount concern. However, recent advances have led to
an efficient and accurate model-based executive, and its per-
formance continues to improve with ongoing research. For
example, performance results presented in [4] for the lat-
est generation of model-based reasoning algorithms show
a significant improvement over the Livingstone algorithm
that was flight validated as part of the Remote Agent Exper-
iment on the Deep Space 1 mission [5].

Other perceived risks associated with Model-based Pro-
gramming relate to how this approach scales to larger sys-



Figure 3. Titan Architecture Diagram [3]

tems, and the implications on the V&V process. Refer-
ence [4] begins to address the scalability issue, and refer-
ence [6] identifies the key issues associated with V&V of
model-based software systems and ways to address them.
Overall, the field of Model-based Programming promises to
bring many advances to embedded software development in
order to meet the needs of future applications.

Titan is an implementation of a model-based, system-
level autonomy framework, developed at MIT. The Titan
architecture, shown in Figure 3, consists of two main com-
ponents: a control sequencer and a deductive controller.
The deductive controller takes as input a model of the sys-
tem, observations of the system, and any commands that
have been issued to generate state estimates; this process is
termed Mode Estimation. The control sequencer uses these
state estimates and a control program written in RMPL (Re-
active Model-based Programming Language), to generate
configuration goals. Each configuration goal is provided
to the deductive controller, which uses the state estimate to
determine what actions are necessary to drive the system
toward a least-cost goal state that satisfies the configuration
goal; this process is called Mode Reconfiguration. In MDS,
the Mission Planning and Execution (MPE) software per-
forms the function of the control sequencer; as such, this
task focused on leveraging the functionality of Titan’s de-
ductive controller. Accordingly, the proceeding discussion
will be limited to the capabilities provided by the deductive
controller.

2.2.1 Mode Estimation

Mode Estimation (ME) is the process of determining the
current best estimate(s) of system state. The deductive con-
troller takes as input observations of the system state, any
commands that may have been issued, as well as a model
of the system of interest, expressed as a factored Partially-
Observable Markov Decision Process (POMDP) [3]. It gen-
erates as output a set of system state estimates; each system
state estimate consists of an assignment to each state vari-
able and an associated probability [7]. The ME process is

repeated at each time step, with the set of K most likely sys-
tem states serving as the starting point of the next estimation
cycle.

Early versions of Titan’s deductive controller employed
Livingstone’s Best-First Trajectory Enumeration (BFTE)
method for estimating system state, in which estimates are
generated by expanding a tree of possible states at each
step [7]. The BFTE algorithm was a significant advance
in the development of a practical model-based executive;
however, a new algorithm has been developed which im-
proves the performance and accuracy of the ME process
and, consequently, the overall performance of the deductive
controller. The new ME algorithm uses a process called
Best-First Belief State Enumeration (BFBSE), which effi-
ciently computes an approximate belief state, adding prob-
abilities associated with different possible transitions to the
same end state. Initial empirical and analytical data show a
significant performance improvement over BFTE in terms
of memory, time, and accuracy [7].

The version of Titan used in support of this task is based
on an implementation of the Best-First Belief State Update
(BFBSU) algorithm, which further improves on the accu-
racy of the BFBSE algorithm by reducing the number of
false-positive diagnoses of fault modes with several consis-
tent observations [8].

2.2.2 Mode Reconfiguration

Mode Reconfiguration (MR) is the process of determining
which (if any) commands must be issued in order to drive
the system towards a specified state that satisfies a config-
uration goal, issued to MR by the control sequencer. Two
functions work in concert in order to achieve this behav-
ior: a goal interpreter, which uses the best estimate of sys-
tem state and the system model to choose a highest reward
goal state that satisfies the configuration goal, and a reac-
tive planner, which uses the best estimate of system state
and the goal state chosen by the goal interpreter to generate
the next command necessary to achieve the specified goal
state [3]. The model-based reasoning algorithms used by
Titan are common to both the ME and MR processes.

3 Task Overview

3.1 Motivation

With the advent of model-based engineering and model-
based design, the task of developing complex systems has
become less error prone and more accurate. While the
process of generating requirements in a model-based fash-
ion certainly is an improvement over the traditional ‘shall’
statement form of requirements documentation, there is still
a manual step involved in creating a software implementa-
tion from a set of requirements expressed as a set of mod-
els. It is natural, then, to ask if it is possible to develop our



models in such a way that they are no longer simply descrip-
tive, but also executable; that is, can the models be captured
such that they can be provided as input to a computer pro-
gram that will use them to perform some interesting system
function?

This task came about in an attempt to show the potential
benefits associated with applying an integrated MDS/Titan
solution to the problem of designing and developing control
software for high-performance resource-constrained space-
craft. As discussed in Section II, the MDS architecture is
model-centric; historically, this has implied a manual trans-
lation of models into code. By introducing Titan, a model-
based executive which embodies the model-based program-
ming paradigm, into the MDS architecture, the ‘holy grail’
of software systems engineering becomes one step closer:
generating one set of models which serve as both require-
ments for, and inputs to, the executing system.

There are other benefits to be considered as well. By fo-
cusing on the contents of the model rather than implemen-
tation issues associated with translating models to code, the
bulk of the development effort can now be focused on get-
ting the domain models right, rather than on software issues.
In addition, any assumptions about the domain are made ex-
plicit in the models, not embedded in the code. This in itself
is an important benefit, as it makes the task of reviewing the
domain models for accuracy much more effective. Situa-
tions where “the code is the model”, which can be quite
dangerous, are avoided. With a model-based programming
driven process, the “model is the code”.

Lastly, this task can potentially lead to further advances
in the application of model-based programming to embed-
ded flight software development. Once model-based pro-
gramming has been introduced and validated within a flex-
ible state-based architecture, the potential for infusion of
other model-based software technologies is increased; for
example, new reasoning algorithms can be tested, or model-
based programming solutions may be applied to other do-
mains, such as activity planning and execution.

3.2 Objectives

The objectives for the task fall into three major areas of
concern. First, as stated in the motivation, this task aims
to perform an integration of both the ME and MR capabil-
ities of Titan’s deductive controller into a small but real-
istic MDS adaptation. Second, this task seeks to provide
an assessment of the applicability of the integrated capabil-
ity to future autonomous exploration missions of all sizes
and classes based on the outcome of this activity. Finally,
a set of guidelines and recommendations for a successful
approach to verification and validation of model-based pro-
grams will be produced. This paper describes an initial step
toward the achievement of these objectives.

3.3 Approach

The activities performed during the task were guided by
the approach. In summary, five main work areas were de-
fined:

1. Compatibility analysis of MDS and Titan;

2. Extension of the MDS frameworks to support integra-
tion of the Titan engine;

3. State Analysis of the example system and development
of the supporting models;

4. Development of the MDS software adaptation; and

5. Testing of the integrated system.

Each of these tasks is discussed in detail below.

3.3.1 Compatibility Analysis

In order to determine the feasibility of the integration task,
the first step was to perform a comparison of the MDS and
Titan architectures and determine the level of compatibility
between the two. An unclear or intractable mapping be-
tween the two domains would represent a formidable chal-
lenge to the integration of these architectures. After a pre-
liminary analysis, however, a clear mapping between the
two domains emerged where the core concepts in Titan cor-
respond to specializations of core concepts in MDS. Briefly,
the relationship can be characterized as follows:

• While State Analysis accomodates any appropriate
model representation, Titan requires a particular rep-
resentation, factored POMDPs, as presented in [3].
However, Titan’s state-based model representation is
wholly compatible with the requirements placed on
models by State Analysis.

• An assignment to a Titan observation variable corre-
sponds to a measurement in MDS, and an assignment
to a Titan control variable corresponds to a command
in MDS.

• Titan’s notion of system state, which consists of an
assignment to each state variable in the system, cor-
responds to a set of MDS state variables. While Ti-
tan represents state estimates as discrete value assign-
ments to state variables, MDS represents state esti-
mates in terms of state functions, which are continuous
representations of state over time. Titan’s discrete rep-
resentation of state estimates corresponds to a constant
state value persisting from one execution cycle to the
next, a pattern which maps nicely to a constant state
function in MDS.



• The functionality provided by ME replaces the hand-
coded estimation algorithms of a typical MDS adap-
tation; similarly, the functionality provided by MR re-
places the hand-coded control algorithms of past adap-
tations.

• Titan uses configuration goals to express intent. Con-
figuration goals are constraints on the desired sys-
tem state, and inherently represent both transition- and
maintenance-type behaviors. MDS’s goals are a more
general representation, and may also be used to cap-
ture either transition behavior (e.g. turn rover wheel to
+90◦) or maintenance behavior (e.g. hold rover wheel
at +90◦). Although the MDS representation is more
general, the Titan representation of intent is still con-
sistent with that of MDS.

3.3.2 Framework Development

For this initial integration effort, there was not a significant
amount of framework development performed; rather, most
of the interface with Titan was relegated to the application-
specific adaptation code. The first step in the framework
development was assessment of the existing APIs to ensure
sufficiency for integration of the Titan engine. The MDS
framework APIs were found to be appropriate, without re-
quiring extension or modification. For the purposes of this
task, the Titan engine was built as an external library and
owned by adapted classes. Future plans are to keep the Ti-
tan engine as an external library, to reduce framework de-
pendencies on externally developed software, but to create
a specialized framework achiever class which will own the
instance of the engine and provide skeletons of the estima-
tion and control methods required by the MDS architecture.

The second major portion of the framework development
effort was developing the MDS interface to the Titan en-
gine. From a design perspective, this activity was quite
straightforward. Since Titan provides functionality nearly
identical to MDS estimators and controllers, it was ideal to
simply ‘hide’ the Titan interface inside MDS estimator and
controller components; this is illustrated in Figure 4. These
components in turn contains code to negotiate the interface
with the Titan engine, in place of hand-coded achiever al-
gorithms.

3.3.3 State Analysis and Modeling

The demonstration system chosen for the task was an Iner-
tial Measurement Unit (IMU) and associated power switch.
The task was able to leverage work performed on an exist-
ing MDS prototype performed in support of a Mars lander
mission. With Titan integrated into the architecture, some
modifications to the State Analysis artifacts were necessary:

• The existing State Effects Diagram had to be modi-
fied to break out some state variables that were pre-
viously combined. Specifically, the IMU operational
mode and health were separated into a distinct state

Figure 4. MDS/Titan Collaboration Diagram
showing the main software components and
the interfaces between them.

variables, as were the power switch operational mode
and health state variables (see Figure 2).

• The software collaboration diagram required modifica-
tion due to the consolidation of estimation and control
functionality for all SVs into one controller and one
estimator component (see Figure 4).

• The previously developed estimation and control al-
gorithms were no longer necessary, as Titan now per-
forms the functionality that was previously contained
in the hand-coded estimators and controllers.

The modeling portion of the task focused on the devel-
opment of the subsystem models that Titan uses for the pur-
poses of mode estimation and reconfiguration. Four models
were developed for this system: a power switch operational
model, and a power switch health model, an IMU opera-
tional model, and an IMU health model. The last two mod-
els are depicted in Figures 5 and 6. These models, expressed
as factored POMDPs, represent state values as circles; it is
important to note that both nominal and off-nominal (i.e.,
fault) state values are captured here. Each state value may
define a modal constraint that must hold in order to transi-
tion to and remain in that state; modal constraints are con-
tained in text boxes next to the associated state value. Each
state may also have an associated reward. Solid arrows
represent transitions between nominal state values, and are
conditioned on the state guard expressions. Dashed arrows
represent possible transitions to off-nominal state values. In
addition to transition guard conditions, each transition has
an associated probability. More detail on the formal seman-
tics of the models is provided in [3].



Figure 5. IMU Operational Mode Model [4]

3.3.4 Adaptation Development

The adaptation development was focused on developing es-
timator and controller components that use the Titan en-
gine, rather than relying on hand-coded estimators and con-
trollers. In addition, since Titan computes estimates for all
state variables in a single computational cycle, several esti-
mator and controller components were condensed into one
estimator and one controller, as specified by the State Anal-
ysis (recall Figure 4). ME and MR use common model-
based reasoning functions, so the interfaces were designed
such that one instance of the Titan engine is shared between
both achiever components. The estimator provides Titan
with the latest state estimates as well as measurement and
command data, then requests a state update. Using the mod-
els plus the state, measurement, and command information,
Titan returns a set of state vectors, ordered by likelihood,
with assignments for all state variables. The estimator then
uses the most likely state vector it receives from Titan to up-
date the associated state variables. The controller performs
similar steps: first, a configuration goal and the latest state
estimates are provided to Titan. Next, the controller asks
Titan whether any commands need to be sent in order to
drive the system to a least-cost goal state. The controller
will then take any action needed based on the result of the
request (i.e., issue the specified command). These estima-
tor and controller interface algorithms are concisely sum-
marized in Figure 7. The benefits of this scheme are clear,
even during the design and implementation phase. Since
Titan is responsible for estimating and controlling several
state variables, the number of software components to be
developed is reduced. In addition, since estimation and con-
trol logic is effectively provided by Titan, no detailed algo-
rithms for estimation and control need to be written, tested,
and debugged. In fact, the logic required to interface with
the Titan engine is quite generic and application-neutral, al-
lowing developers to simply instantiate an implementation
of a general ‘Titan Achiever’ component in place of a hand-
crafted estimator or controller with little specialization (see
Figure 7). This amounts to a significant savings in terms of
development time.

Figure 6. IMU Health Model [4]

3.3.5 Testing

The test portion of the effort was based around two main
thrusts: software verification and model verification. The
tests were designed to ensure that from a software stand-
point, all of the interfaces between Titan, the MDS frame-
works, and the adaptation code were properly defined and
implemented. All testing was performed against a software
simulation, which allowed for testing of both nominal and
fault behaviors. Success criteria are based on the mod-
els and observed behavior of the system without Titan in
the loop – that is, using hand-coded achievers. From the
standpoint of model verification, the tests were designed
to root out any latent issues with the models themselves.
During the course of this effort, the most common mod-
eling error observed was unrealistically high probabilities
associated with several of the off-nominal states, an error
which sometimes resulted in a state variable being improp-
erly diagnosed to be in an off-nominal state. These errors
were discovered during test and the probabilities were sub-
sequently tuned to values which more closely represented
likelihoods associated with the particular failure modes.

Each test case is based on a single operational scenario,
and therefore uses the same activity plan, expressed in terms
of a goal network (refer to [1] for more information on the
details of activity plans and goal elaborations). The plan
places a goal on the IMU operational mode to transition
to and maintain the “Measuring” state; this goal elaborates
into subgoals on the IMU health state variable, and the oper-
ational mode and health state variables of the power switch,
constraining them to transition to and maintain “Healthy”,
“Closed”, and “Healthy” states, repectively. The plan is
constrained to stay active for a duration of 120 seconds. Us-
ing this activity plan, five test cases were defined for this
task, each designed to exercise a particular behavior of the
system (including failure modes).

• No Fault: This is the most basic system test, designed
to exercise nominal operation of the system. The nom-



subroutine Estimate()
{

Provide observation data to Titan
Provide command data to Titan
Request state update from Titan
Update MDS State Variables with new
state estimates

}

subroutineControl()
{

Map MDS Constraint to Titan
Configuration Goal

Query all relevant MDS State Variables
Provide latest state estimates to Titan
Request new command from Titan
if command to be issued

translate Titan command to hardware
command

send command to hardware
end if

}

Figure 7. Pseudocode for Titan Estimator and
Controller Interfaces

inal plan, described above, is put in place and allowed
to execute to completion. Nominal measurements are
provided by the simulation throughout the test.

• Fault Case 1: Test designed to verify proper system
behavior in response to a recoverable fault case where
the IMU fails to exit its initalization state. The IMU
is induced to produce initialization data, via a fault in-
jection through the simulation, even after the alloted
initialization period has expired. Recovery is accom-
plished by issuing a reset command to the IMU.

• Fault Case 2: Test designed to verify proper system
behavior in response to a recoverable fault case where
the IMU produces out-of-range data during nominal
operation. The IMU is induced to produce out-of-
range data, via a fault injection through the simula-
tion, sometime after the IMU has entered the measur-
ing state. Recovery is accomplished by issuing a reset
command to the IMU.

• Fault Case 3: Test designed to verify proper system
behavior in response to a non-recoverable fault case
where the IMU never exits its initalization state. The
IMU is induced to produce initialization data, via a
fault injection through the simulation, even after the
alloted initialization period has expired. The fault in-
jection is left applied such that attempts to repair the
IMU will have no effect.

• Fault Case 4: Test designed to verify proper system
behavior in response to a recoverably tripped IMU
power switch fault. The IMU power switch is tripped
open 30 seconds after test start via an overcurrent fault

injection through the simulation, resulting in a loss of
power to the IMU. Recovery is accomplished by is-
suing a command to open the switch (to “clear” the
tripped condition), followed by a command to close
the switch (to power on the IMU).

The above set of test cases exercises both nominal and
off-nominal operational modes. For a follow-on effort, it
will be desirable to define a larger set of test cases in order
to test more exotic failure modes and provide a broader set
of data with which to characterize the behavior of a more
complex system, containing more state variables.

4 Results

The implementation was quite straightforward. Most of
the issues associated with integrating Titan into an MDS
adaptation were revealed during integration of ME; as a
consequence, the MR integration progressed very quickly.

Several interesting challenges were uncovered during the
task. Some of these issues were resolved in the imple-
mented system; some were resolved in principle but not
implemented in the demonstration; the rest were noted as
issues to be addressed by future work. A number of these
issues are discussed below.

• Issue 1: How to accomodate the “centralization of
functionality” provided by Titan within the MDS ar-
chitecture?

• Resolution: The centralization of functionality that
naturally accompanies this approach is not a problem
as far as MDS is concerned, as long as we do not vio-
late any of the stated architectural principles, notably:

– All state information is stored in state variables –
achievers may not store any local state.

– State variables have only one associated estima-
tor and controller. Only the associated estimator
may update that state variable.

– Estimators and controllers may be responsible
for multiple state variables, as long as they are
the only estimator or controller associated with
that state variable.

Our implementation has adhered to these fundamental
principles.

• Issue 2: Titan adopts the notion of an approximate be-
lief state, which is an assignment of values to all state
variables and an associated likelihood. How does this
notion fit into the MDS architecture, where state vari-
ables are the single source of state value and uncer-
tainty information?

• Resolution: One possible resolution would be to col-
lapse all state variables into a single “system state vari-
able” which could capture all K leading estimates. Un-



certainty would be represented by the approximate be-
lief state probabilities associated with each of the K
estimates. However, a more modular solution that re-
tains the individual state variables within the architec-
ture may be desirable. Since we have access to the
K most likely system state estimates, a particular state
variable’s estimate can be computed by finding all sys-
tem state estimates which contain that same state as-
signment and adding up the associated probabilities
(this provides an upper bound on the true probability
of being in that state). This information can be used
to construct the associated uncertainty for that state as-
signment. The current implementation does not per-
form this computation; instead, only the assignments
corresponding to the most likely system state estimate
are captured in the state variables, and assumed to be
perfectly known or unknown. The limitation of this
approach is that if, when presented with some amount
of observation data, Titan determines that the current
most likely estimate is in fact wrong and a new state
estimate becomes most likely, this sudden change of
course appears as a sharp discontinuity to the rest of
the control system. Future work would implement the
more accurate method of tracking probabilistic uncer-
tainty.

• Issue 3: Titan operates only on discrete states. How
do we integrate Titan with portions of the system that
deal with continuous state variables?

• Resolution: Another benefit of this task is providing
a solution to this issue. MDS allows for integration
of various estimation and control approaches for dif-
ferent state variables such as Kalman filters, hypothe-
sis testing, PID control, etc., as dictated by the needs
of the application. One reasonable solution is to sim-
ply allow Titan to handle a subset of the system’s dis-
crete states and create traditional achievers for the con-
tinuous states. Another possible solution is provided
by active research in the area of hybrid model-based
programming; for example, [9] describes an any-time
algorithm for generating estimates for discrete modes
and continuous state variables. Integrating this type
of hybrid state estimation capability is identified as a
possible direction for future work.

• Issue 4: During testing of the integrated ME and MR
functionality, several of the tests began to fail due to a
faulty estimation of the power switch health state vari-
able as being in an UNKNOWN state, despite the fact
that consistent power switch observations were being
provided to Titan. The failure was observed to occur
less than a second after test start, before any activities
had commenced.

• Resolution: This issue illustrated a potential limita-
tion of the current Titan design; namely, Titan does

not properly handle some types of dependencies be-
tween state variables. This limitation resulted in an in-
ability to discriminate between nominal power switch
behavior and the UNKNOWN state (a low probability
state that is consistent with all behavior). In the ab-
sence of a state dependency in the model, the BFBSU
algorithm would be able to properly discriminate be-
tween these states. This issue was exacerbated by the
presence of some modeling irregularities in the IMU
and power switch models developed for this task. The
issue was mitigated as follows. The probability associ-
ated with the UNKNOWN state was reduced to a more
realistic value of 10e−6; this effectively delayed the
time that it would take for the estimate containing the
UNKNOWN state to become the most likely estimate,
long enough such that a transition would occur, caus-
ing the estimates to change and the probability of the
failed estimate to drop as a result. To more thoroughly
address this issue, future work will need to focus on
two areas:

– characterization of exactly which types of de-
pendencies are problematic for the existing al-
gorithm, and modify the Titan algorithm to ac-
comodate such interdependencies between state
variables.

– development of a set of modeling guidelines to
ensure that the source models properly express
the physical dependencies of the system under
control.

• Issue 5: MDS allows for the specification of knowl-
edge goals, i.e., constraints on the level of uncertainty
in a state estimate. How are knowledge goals inter-
preted by Titan, which currently has no corresponding
notion?

• Resolution: Titan represents estimate uncertainty in
terms of a belief state probability on a given state vari-
able. Therefore, a knowledge goal could be expressed
in terms of a minimum percent likelihood of a partic-
ular state value. As suggested above, the computation
of the probability of each state variable assignment can
be performed by adding the probabilities associated
with every state estimate in the belief state that con-
tains this particular assignment. Goal satisfaction can
then be verified by comparing this computed probabil-
ity with the level of uncertainty specified in the goal.
One might even envision the elaboration of active con-
trol subgoals in support of a transition goal requesting
a higher quality estimate, resulting in “active probing”
of the system to increase the certainty in the state esti-
mate. Another solution would be to increase the num-
ber of tracked state estimates K in order to improve the
quality of the likelihood estimate.



5 Conclusion

MDS and Model-based Programming are proving to be
a natural fit. The state-based systems engineering method-
ology embodied by the State Analysis process considers
models to be central to the design of high-assurance, fault-
tolerant control system software. However, the transla-
tion of models developed during State Analysis into exe-
cutable code is still a manual process, which can be arduous
and error-prone. Augmenting the MDS frameworks with a
state-of-the-art, model-based reasoning engine can provide
both systems and software engineers with the capabilities
necessary to create reliable control software, and do it more
rapidly. While this particular task was limited in scope, the
results are quite promising. Future work will expand the
scope of the demonstration and further characterize the ap-
plicability, benefits, and limitations of the integrated capa-
bility for space exploration missions.

Acknowledgments

This research was carried out at the Jet Propulsion Lab-
oratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration
and funded through the Director’s Research and Develop-
ment Fund program. The authors would like to thank the
following people for their assistance with this task: Dave
Wagner for his help with issues related to the MDS frame-
works during the initial integration; Len Charest, who per-
formed the initial integration of the mode estimation capa-
bility; and Paul Elliott for his help integrating the Titan soft-
ware.

References

[1] M. D. Ingham, R. D. Rasmussen, M. B. Bennett,
and A. C. Moncada, “Generating requirements for
complex embedded systems using State Analysis,”
Proceedings of the 55th International Astronauti-
cal Congress, October 2004, paper #IAC-04-IAF-
U.3.A.05.

[2] D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks,
“Software architecture themes in JPL’s Mission Data
System,” Proceedings of the IEEE Aerospace Confer-
ence, 2000.

[3] B. C. Williams, M. D. Ingham, S. H. Chung, and
P. H. Elliott, “Model-based programming of intelli-
gent embedded systems and robotic space explorers,”
Proceedings of the IEEE: Special Issue on Modeling
and Design of Embedded Software, 2003.

[4] O. B. Martin, “Accurate belief state update for prob-
abilistic constraint automata,” Master’s thesis, Mas-
sachusetts Institute of Technology, 2005.

[5] D. Bernard et al., “Spacecraft autonomy flight experi-
ence: The DS1 Remote Agent Experiment,” Proceed-
ings of the AIAA Space Technology Conference and
Exposition, 1999, paper #AIAA-99-4512.

[6] M. S. Feather, L. M. Fesq, M. D. Ingham, S. L. Klein,
and S. D. Nelson, “Planning for V&V of the Mars Sci-
ence Laboratory rover software,” Proceedings of the
IEEE Aerospace Conference, 2004.

[7] O. B. Martin, B. C. Williams, and M. D. Ingham,
“Diagnosis as approximate belief state enumeration
for probabilistic concurrent constraint automata,” Pro-
ceedings of the Twentieth National Conference on Ar-
tificial Intelligence, 2005.

[8] O. B. Martin, S. H. Chung, and B. C. Williams, “A
tractable approach to probabilistically accurate mode
estimation,” Proceedings of the Eigth International
Symposium on Artifical Intelligence, Robotics, and
Automation in Space, 2005.

[9] M. W. Hofbaur and B. C. Williams, “Mode estimation
of probabilistic hybrid systems,” in Hybrid Systems:
Computation and Control, C. Tomlin and M. Green-
street, Eds., vol. 2289. Springer-Verlag, 2002, pp.
253–266.

[10] M. D. Ingham, “Timed Model-based Programming:
Executable specifications for robust mission-critical
sequences,” Ph.D. dissertation, Massachusetts Insti-
tute of Technology, 2003.


